Ten Protocol
Obscu/TEN

=/\LLBLIRIN

Ten Protocol - Obscu/TEN

Prepared by: < HALBORN
Last Updated 06/18/2025
Date of Engagement: May 5th, 2025 - May 8th, 2025

Summary

100°% ©® OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS " HIGH) mEDIuM) Low N INFORMATIONAL
22 o o o 7 15

TABLE OF CONTENTS

. Introduction

. Assessment summary

. Test approach and methodology

. Risk methodology

. Scope

. Assessment summary & findings overview
. Findings & Tech Details

N 0O o B W

7.1 Missing validation of callbackid existence in canreattemptcallback modifier
7.2 Lack of callback cancellation and lifecycle controls

7.3 Inadequate callback array management

7.4 Single step ownership transfer process

7.5 Fixed token minting regardless of transaction value

7.6 Lack of transaction processing tracking mechanism

7.7 Missing error handling for callbacks

7.8 Unnecessary external call in _internalrefund when refund amount is zero
7.9 Missing input validation

7.10 Use of low-level transfer method

7.11 Floating pragma

7.12 Use of revert strings instead of custom errors

7.13 Unhandled return value in _payforcallback function

7.14 Missing events

7.15 Open to-dos

7.16 Redundant default value assignment
7.17 Public functions can be marked external
7.18 Commented functionality

7.19 Missing variable visibility

7.20 Lack of named mappings

7.21 Unused import

7.22 Unoptimized for loops
8. Automated Testing

engaged (JEITIIRY to conduct a security assessment on their smart contracts beginning
on May 5th, 2025 and ending on May 8th, 2025. The security assessment was scoped to the smart
contracts provided to Halborn. Commit hashes and further details can be found in the Scope section of
this report.

The Qg I AMcodebase in scope mainly consists of an infrastructure with an upgradeable token
system, cross-chain messaging, and transaction processing mechanisms.

2. Assessment Summary
was provided 4 days for the engagement and assigned 1 full-time security engineer to review
the security of the smart contracts in scope. The engineer is a blockchain and smart contract security

expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

« ldentify potential security issues within the smart contracts.
« Ensure that smart contract functionality operates as intended.

In summary, identified some improvements to reduce the likelihood and impact of risks, which
were partially addressed by the QEIEdgIS I AMRLLIN. The main ones are the following:

Add validation in the canReattemptCallback modifier to ensure the callbackId

Consider adding functionality to allow callback originators to cancel their

pending callbacks when they're no longer needed or desired.
S Consider implementing a comprehensive callback management system.

3. Test Approach And Methodology

performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While
manual testing is recommended to uncover flaws in logic, process, and implementation; automated
testing techniques help enhance coverage of smart contracts and can quickly identify items that do not
follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

« Research into architecture, purpose and use of the platform.

« Smart contract manual code review and walkthrough to identify any logic issue.

« Thorough assessment of safety and usage of critical Solidity variables and functions in scope that
could led to arithmetic related vulnerabilities.

. Local testing with custom scripts ((FIEID)-

- Fork testing against main networks ((FYINeIa-

« Static analysis of security for scoped contract, and imported functions ().

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means

by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

41 EXPLOITABILITY

ATTACK ORIGIN [AO).

Captures whether the attack requires compromising a specific account.
ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory

challenges.

METRICS:

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

.. Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2
Low (AC:L) 1

Attack Cost (AC) Medium (AC:M) 0.67

High (AC:H) 0.33

EXPLOITABILITY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:Hme

4.2 IMPACT
CONFIDENTIALITY (C).

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

DEPOSIT (D).
Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS.:
IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE

None (I:N) 0
Low (I:L) 0.25

Integrity (1) Medium (I1:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25

Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical (A:C) 1

None (D:N) 0
Low (D:L) 0.25

Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25

Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75

Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = max(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

SCOPE (S):

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS.:
SEVERITY COEFFICIENT (C) COEFFICIENT VALUE NUMERICAL VALUE
None (R:N) 1
Reversibility (7) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25
Scope (8)

Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

C=rs

The Vulnerability Severity Score .S is obtained by:

S = min(10, EIC * 10)

The score is rounded up to 1 decimal places.

45-6.9

REPOSITORY

(a) Repository:
(b) Assessed Commit ID:

(c) Items in scope:

« src/common/Structs.sol

« src/system/contracts/Fees.sol

« src/system/contracts/PublicCallbacks.sol

« src/system/contracts/SystemDeployer.sol

« src/system/contracts/TransactionPostProcessor.sol
« src/system/utils/ZenBase.sol

« src/ten_erc20/TENToken.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIATION COMMIT ID:

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

| CRITICAL J CID CIZID [LOW
o o o 7

INFORMATIONAL

https://github.com/ten-protocol/go-ten
https://github.com/ten-protocol/go-ten/commit/6cae3418c7b2e48cda56011413a4afd13ddaeb7a
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

MISSING VALIDATION OF CALLBACKID EXISTENCE IN
CANREATTEMPTCALLBACK MODIFIER

LACK OF CALLBACK CANCELLATION AND LIFECYCLE
CONTROLS

INADEQUATE CALLBACK ARRAY MANAGEMENT

SINGLE STEP OWNERSHIP TRANSFER PROCESS

PARTIALLY SOLVED -
05/20/2025

FIXED TOKEN MINTING REGARDLESS OF TRANSACTION
VALUE

PARTIALLY SOLVED -
05/20/2025

LACK OF TRANSACTION PROCESSING TRACKING
MECHANISM

RISK ACCEPTED -
06/11/2025

MISSING ERROR HANDLING FOR CALLBACKS

RISK ACCEPTED -
06/11/2025

UNNECESSARY EXTERNAL CALL IN _INTERNALREFUND
WHEN REFUND AMOUNT IS ZERO

RISK ACCEPTED -
06/11/2025

MISSING INPUT VALIDATION

ACKNOWLEDGED -
06/11/2025

USE OF LOW-LEVEL TRANSFER METHOD

PARTIALLY SOLVED -
05/20/2025

FLOATING PRAGMA

USE OF REVERT STRINGS INSTEAD OF CUSTOM
ERRORS

ACKNOWLEDGED -
06/11/2025

UNHANDLED RETURN VALUE IN _PAYFORCALLBACK
FUNCTION

ACKNOWLEDGED -
06/11/2025

MISSING EVENTS

OPEN TO-DOS

REDUNDANT DEFAULT VALUE ASSIGNMENT

PUBLIC FUNCTIONS CAN BE MARKED EXTERNAL

COMMENTED FUNCTIONALITY

MISSING VARIABLE VISIBILITY

LACK OF NAMED MAPPINGS

ACKNOWLEDGED -
06/11/2025

PARTIALLY SOLVED -
05/20/2025

PARTIALLY SOLVED -
05/20/2025

UNUSED IMPORT

UNOPTIMIZED FOR LOOPS

7. FINDINGS 8 TECH DETAILS

7.1 MISSING VALIDATION OF CALLBACKID EXISTENCE IN
CANREATTEMPTCALLBACK MODIFIER

Description

The modifier in the contract does not validate whether the
provided actually exists before checking its eligibility for reattempt. The modifier only
verifies that the callback's block number is less than the current block number, but doesn't check if the
callback exists in the first place.

946 | modifier canReattemptCallback(uint256 callbackId) {
require(callbackBlockNumber[callbackId] < block.number, "Callback cannot be reattempted yet"

Since these calls succeed rather than revert, users could congest the network with seemingly legitimate
but ultimately useless operations. This could artificially inflate transaction volume and potentially disrupt
system performance as part of a broader denial-of-service strategy.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (3.1)

Recommendation
Add validation in the EEIRNERRENQACYRMETAY Mmodifier to ensure the callbackld exists.

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.2 LACK OF CALLBACK CANCELLATION AND LIFECYCLE
CONTROLS

Description

The contract offers no mechanism for users to cancel registered callbacks that are
no longer needed or relevant. Once a callback is registered, it can only be removed from the system
through successful execution, and failed callbacks remain permanently in the system with no recourse
for users.

This creates a rigid, inflexible system where users have no agency over their registered callbacks after
submission, even if circumstances change or the callback is no longer desired.

Additionally, the permissionless nature of JEcERREIMACARLEIAION means anyone can trigger the
execution of another user's callback, removing the callback originator's control over when and if their

failed callback should be retried.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation

It is recommended to consider:

« Adding functionality to allow callback originators to cancel their pending callbacks when they're no
longer needed or desired.

« Implementing a time-based expiration mechanism to prevent stale callbacks from persisting
indefinitely.

« Adding access controls to so only authorized parties (callback originators or
their delegates) can retry execution.

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit gsle=¥#4 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.3 INADEQUATE CALLBACK ARRAY MANAGEMENT

Description

The EEEHEEIAS RVl contract has two related issues with its (AN INERATIILY o rray

management:

1. No mechanism exists to remove callbacks once added, even if they become compromised or
malfunction.

2. The array can grow without bounds since callbacks can only be added, not removed.

3. The ELLRIEAIANZGCIENREEIAON function lacks validation to prevent duplicate callbacks, allowing

the same callback to be registered multiple times.
These issues combine to create a vulnerability where:

« Compromised or buggy callbacks cannot be removed and will continue to execute.
« The array will only grow over time, steadily increasing gas costs for the [JilsAtIdq@H function.
Eventually, this could lead to transactions hitting block gas limits, causing a denial of service.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:C/1:M/D:N/Y:N (2.3)

Recommendation

Consider implementing a comprehensive callback management system that includes:

« Functionality to remove specific callbacks from the array when they're no longer needed or have
security issues.

« Areasonable maximum limit on the total number of callbacks that can be registered.

« Validation to prevent duplicate callbacks from being added multiple times.

Remediation Comment
PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit by enabling

the removal of callbacks and adding some input validation in QEEUECIAS I ERdd gt eld. However,

mechanisms to set a maximum limit on callbacks or prevent duplicate entries were not implemented.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.4 SINGLE STEP OWNERSHIP TRANSFER PROCESS

Description

Some of the contracts in scope inherit the or UELNCUIIEREEIAEEY contract implementations

from OpenZeppelin's library, which are used to restrict access to certain functions to the contract owner.
The pattern allows the contract owner to transfer ownership to another address using the

NS TUEIS B IO function. However, the SEEIIAESIENAEIEII®R function does not include a two-

step process to transfer ownership.

Regarding this, it is crucial that the address to which ownership is transferred is verified to be active and
willing to assume ownership responsibilities. Otherwise, the contract could be locked in a situation where
it is no longer possible to make administrative changes to it.

Additionally, the EEElI IS IBIJ@N function allows renouncing to the owner permission.
Renouncing ownership before transferring it would result in the contract having no owner, eliminating the

ability to call privileged functions.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N (2.0)

Recommendation

Consider using OpenZeppelin's (UEIIEPANEY o TQEIAEPARLSAI I EEIQESY contracts over the
and the MUEIAENIIELEEIARY implementations. (UTREINPANLlY provides a two-step

ownership transfer process, which adds an extra layer of security to prevent accidental ownership
transfers.

Additionally, it is recommended that the owner cannot call the g IIASOREIEEIJ@N function to avoid
losing ownership of the contract.

Remediation Comment

PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit gs[sE¥#A by
implementing a two-step ownership transfer process in the contract, but other ownable contracts

ICR TENToken JEXRe still use a single-step process.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.5 FIXED TOKEN MINTING REGARDLESS OF TRANSACTION
VALUE

Description

The contract's (iEANIANLAWE function mints exactly 1 token for each processed transaction,
regardless of the transaction's value, complexity, or significance.
function onBlockEnd(Structs.Transaction[] calldata transactions) external onlyCaller {

if (transactions.length == 0) {
revert("No transactions to convert");

}

for (uint256 i=0; i<transactions.length; i++) {

_mint(transactions[i].from, 1);

Since this approach fails to consider the relative importance of transactions, it could be exploited by
users who deliberately create numerous small transactions to maximize their token rewards, which could
lead to an economically unbalanced system where minor transactions receive the same reward as more
substantial ones.

BVSS
AO:S/AC:L /AX:L/R:N/S:U/C:N/A:N/I1:C/D:N/Y:N (2.0)

Recommendation

Consider implementing a more economically balanced token distribution system that considers
transaction attributes.

Remediation Comment

RISK ACCEPTED: The Ten Protocol team made a business decision to accept the risk of this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N

7.6 LACK OF TRANSACTION PROCESSING TRACKING
MECHANISM

Description

The I IAR=LIQN function of the contract lacks a mechanism to track which transactions
have been processed, potentially allowing the same transaction to be processed multiple times. This
could lead to unauthorized token minting through transaction replay attacks, undermining the token's
economic model and distribution integrity.

function onBlockEnd(Structs.Transaction[] calldata transactions) external onlyCaller {

if (transactions.length == 0) {
revert("No transactions to convert");
3

for (uint256 i1=0; i<transactions.length; i++) {

_mint(transactions[i].from, 1);

Without a tracking mechanism, there's no way to prevent the same transaction from being submitted
multiple times, potentially resulting in duplicate token minting.

BVSS
AO:S/AC:L /AX:L/R:N/S:U/C:N/A:N/I1:C/D:N/Y:N (2.0)

Recommendation

Consider implementing a transaction tracking mechanism that records completed transactions in order
to prevent duplicate processing and potential unauthorized token minting.

Remediation Comment

RISK ACCEPTED: The Ten Protocol team made a business decision to accept the risk of this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N

7.7 MISSING ERROR HANDLING FOR CALLBACKS

Description
The EEAGIAS@N function lacks error handling when executing callbacks. If any callback in the loop

reverts, the entire transaction processing fails, creating a critical single point of failure.

function onBlock(Structs.Transaction[] calldata transactions) public onlySelf {
if (transactions.length == 0) {
revert("No transactions to convert");
}

for (uint256 i = 0; i < onBlockEndListeners.length; ++i) {
IOnBlockEndCallback callback = onBlockEndListeners[i];
callback.onBlockEnd(transactions);

This design allows malicious or buggy callbacks to cause denial of service for the entire transaction post-
processing system.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N (2.0)

Recommendation

Consider implementing try-catch blocks around each callback invocation to isolate failures and handle
them accordingly.

Remediation Comment

RISK ACCEPTED: The Ten Protocol team made a business decision to accept the risk of this finding and
not alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N

7.8 UNNECESSARY EXTERNAL CALLIN INTERNALREFUND
WHEN REFUND AMOUNT IS ZERO

// INFORMATIONAL

Description

In the GICISKAEARGEIAY contract, the EEANEN\IGACARETA®E function unconditionally calls the

IR EIERS Vel function regardless of whether there is actually any gas to refund. When
CEHACSIMEANENNNES is O, this results in an unnecessary external call that consumes gas without providing
any benefit.

BVSS
AQ:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation

Add a check to avoid the external call when the refund amount is zero.

Remediation Comment

ACKNOWLEDGED: The Ten Protocol team made a business decision to acknowledge this finding and not
alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.9 MISSING INPUT VALIDATION

// INFORMATIONAL

Description

Throughout the codebase, there are several instances where input values are assigned without proper
validation. For example, ensuring that an input address is not the zero address or that an integer falls
within a valid range.

Failing to validate inputs before assigning them to state variables can lead to unexpected system
behavior or even complete failure.

Instances of this issue include:

o In SRS EIERLEION BAENEEE) is not validated to ensure it's within reasonable bounds before
being assigned to .
o In IREESUEEEEEREEION. UEUREERIRUEEEERE) is not validated to ensure it's within reasonable

bounds.

I SystemDeployer.constructor() el remoteBridgeAddress JERIN I Clo RIS dd a[c4A=110)

address before assignment.

SN TransactionPostProcessor.addOnBlockEndCallback() Mo el It == R- o Lo [=]s!

without verifying that:

« They are not zero addresses.
« They are actually contract addresses.

« They properly implement the EANJANALICCARIETAY interface.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N (1.5)

Recommendation

Add proper validation to ensure that the input values are within expected ranges and that addresses are
not the zero address. This will help prevent unexpected behavior and improve the overall robustness of
the code.

Remediation Comment
PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit by adding

several input validations, such as zero-address checks in ENEATSUDE AT a1, , and
INCHEEIAS R I I L I Y AN. However, validations for fee-related parameters in the

contract were not implemented.

Remediation Hash

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N

https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

7.10 USE OF LOW-LEVEL TRANSFER METHOD

// INFORMATIONAL

Description

In the contract, there is an instance of the method to withdraw native assets (e.qg.
Ether) from the smart contracts. Although the use of transfer has been a standard practice for sending
native assets due to its built-in reentrancy protection (since it only forwards 2300 gas, preventing called
contracts from performing state changes), it is not considered best practice.

The gas cost of EVM instructions may change significantly during hard forks, which may break already
deployed contract systems that make fixed assumptions about gas costs.

BVSS
AQ:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (1.0)

Recommendation
Transfer native assets via the low-level fscA44@B Mmethod instead.

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit gfsletE¥#4 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.11 FLOATING PRAGMA

// INFORMATIONAL

Description

The contracts in scope currently use different floating pragma versions N "0.8.22 ENN ~0.8.28
which means that the code can be compiled by any compiler version that is greater than these versions,

and less than .

However, it is recommended that contracts should be deployed with the same compiler version and flags
used during development and testing. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using another pragma. For example, an outdated pragma version might
introduce bugs that affect the contract system negatively.

Additionally, from Solidity versions (‘] through XY the default target EVM version is set to
SUERELER, Wwhich results in the generation of bytecode that includes {EVSsl“8 opcodes. Starting with
version (JR:PAY, the default EVM version shifts to , introducing new opcodes for transient

storage, QRN and QX))

In this aspect, it is crucial to select the appropriate EVM version when it's intended to deploy the
contracts on networks other than the Ethereum mainnet, which may not support these opcodes. Failure
to do so could lead to unsuccessful contract deployments or transaction execution issues.

BVSS
AQ:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (1.0)

Recommendation

Lock the pragma version to the same version used during development and testing (for example:
SRR ond make sure to specify the target EVM version when using Solidity versions from
UL/l and above if deploying to chains that may not support newly introduced opcodes.

Additionally, it is crucial to stay informed about the opcode support of different chains to ensure smooth
deployment and compatibility.

Remediation Comment

ACKNOWLEDGED: The Ten Protocol team made a business decision to acknowledge this finding and not
alter the contracts. They updated the Solidity compiler version specified in the contract pragmas, but did
not uniformly lock all pragmas to a single, exact compiler version (without a caret) across all files.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N

7.12 USE OF REVERT STRINGS INSTEAD OF CUSTOM ERRORS

// INFORMATIONAL

Description

Throughout the files in scope, there are several instances where revert strings are used over custom
errors.

In Solidity, replacing hard-coded revert message strings with the syntax is an optimization
strategy that can significantly reduce gas costs. Hard-coded strings, stored on the blockchain, increase
the size and cost of deploying and executing contracts.

The syntax allows for the definition of reusable, parameterized custom errors, leading to a
more efficient use of storage and reduced gas consumption. This approach not only optimizes gas usage
during deployment and interaction with the contract but also enhances code maintainability and
readability by providing clearer, context-specific error information.

BVSS
AQ:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N (0.8)

Recommendation

Consider replacing all revert strings with custom errors. For example:

error ConditionNotMet();

if (lcondition) revert ConditionNotMet();

or starting from Solidity :

require(condition, ConditionNotMet());

For more references, see here and here.

Remediation Comment

ACKNOWLEDGED: The Ten Protocol team made a business decision to acknowledge this finding and not
alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://soliditylang.org/blog/2021/04/21/custom-errors/#errors-in-depth
https://soliditylang.org/blog/2024/09/04/solidity-0.8.27-release-announcement/

7.13 UNHANDLED RETURN VALUEIN PAYFORCALLBACK
FUNCTION

// INFORMATIONAL

Description

In the GAICISXAEIRGEIAY contract, the EENIRIEECNMNEIAY function makes a low-level call to transfer

ETH to the block's coinbase address without checking the return value of this operation. Although the
function contains comments indicating that the success of this operation is not a concern, ignoring the
return value could lead to silent failures in payment processing.

BVSS
AQ:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.8)

Recommendation

Consider modifying the function to at least monitor for failures, even if the contract chooses not to
revert.

Remediation Comment

ACKNOWLEDGED: The Ten Protocol team made a business decision to acknowledge this finding and not
alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.14 MISSING EVENTS

// INFORMATIONAL

Description

Throughout the contracts in scope, there are several instances where administrative functions change
contract state by modifying core state variables without them being reflected in event emissions.

The absence of events may hamper effective state tracking in off-chain monitoring systems.

Instances of this issue can be found in:

gl Fees - sethessageFee()

gl Fees - withdrawalCollectedFees ()

gl PublicCallbacks. register ()]

gl PubLicCallbacks. executeNextCallback ()]

gl T ransactionPostProcessor.addonBlockEndCallback ()]

BVSS
AOQ:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.6)

Recommendation

Emit events for all state changes that occur as a result of administrative functions to facilitate off-chain
monitoring of the system.

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit gs[exE¥#4 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.15 OPEN TO-DOS

// INFORMATIONAL

Description

Throughout the contracts in scope, there are instances of open TODO comments that indicate incomplete
documentation or potentially unfinished implementation.

These unresolved items create uncertainty about the completeness of the codebase and may hide
critical implementation gaps that could lead to unexpected behavior or security vulnerabilities when the
protocol is deployed.

BVSS
AQ:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N (0.4)

Recommendation

Ensure that the TO-DO comments are implemented and resolved before the final release of the project.

Remediation Comment

PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit gs[eE¥#4 by addressing
most QI comments and providing updated documentation or removing them. However, one ISl
comment regarding an explanation remains in .

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.16 REDUNDANT DEFAULT VALUE ASSIGNMENT

// INFORMATIONAL

Description

In the I SXLERNFEILSN contract's function, the state variables IS q4SCANEI NN and
JEISdILIVECGICRRNET el o explicitly initialized to zero.

However, in Solidity, all state variables are automatically initialized to their default values when a
contract is deployed - zero for integers, false for booleans, empty string for strings, etc. Therefore,
explicitly initializing these variables to zero is redundant and wastes gas during contract
initialization.

BVSS
AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N (0.3)

Recommendation

Remove the redundant assignments from the GGERSEAGPAIQN function. If the function becomes empty
after removing redundant assignments, consider whether the GIERSEIRPAION function is needed at all, or
if it will be needed in the future for additional initialization logic when upgrading the contract.

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit gs[exE¥#4 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.17 PUBLIC FUNCTIONS CAN BE MARKED EXTERNAL

// INFORMATIONAL

Description

Some functions throughout the contracts in scope are currently defined with the visibility
modifier, even though the functions are not called from within the contract, resulting in higher gas costs
than necessary.

Instances of this issue include:

gl T ransactionPostProcessor. addonBlockEndCallback ()]
gl T ransactionPostProcessor.onBlock()]

gl TENToken. pause () |

gl TE\\Token. unpause ()

BVSS
AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.3)

Recommendation
Modify the functions not used within the contracts with the visibility modifier.

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit gslesE¥#4 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.18 COMMENTED FUNCTIONALITY

// INFORMATIONAL

Description

Throughout the contracts in scope, there are instances of commented out code that is not used. This
code may introduce unnecessary confusion to the contract.

While commenting out code can be useful for debugging or testing purposes, it can also lead to confusion
and make the codebase harder to maintain.

BVSS
AQ:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.2)

Recommendation

Remove the commented-out lines of code to clean up the contract and improve readability.

Alternatively, if the functionality is.needed, uncomment and update the code as necessary.

Remediation Comment
PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit gsletE¥#4 by removing

the commented-out event emission in EEEHEEIART M Rt g I IR AN, but 2 commented-out event
emission remains in PASUBEREPEAN.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.19 MISSING VARIABLE VISIBILITY

// INFORMATIONAL

Description

The EIBAGIARNEIREINIAEN variable of the QEEUEEIAS I IRddeIdIIYId contract is not explicitly

defined. By default, variables are set with the visibility.

However, it is considered best practice to explicitly specify visibility to enhance clarity and prevent
ambiguity. Clearly labeling the visibility of all variables and functions will help in maintaining clear and
understandable code.

BVSS
AQ:A/AC:H/AX:L/R:F/S:U/C:N/A:L /I1:N/D:N/Y:N (0.2)

Recommendation

Explicitly define the visibility of all variables in the contracts to enhance readability and reduce the
potential for errors.

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit g«leE¥#4 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.20 LACK OF NAMED MAPPINGS

// INFORMATIONAL

Description

The project contains several unnamed mappings despite using a Solidity version that supports named
mappings.

Named mappings improve code readability and self-documentation by explicitly stating their purpose.

Instances of this issue can be found in:

O PublicCallbacks.callbacks()
S PublicCallbacks.callbackBlockNumber()

BVSS
AQ:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.1)

Recommendation

Consider refactoring the mappings to use named arguments, which will enhance code readability and
make the purpose of each mapping more explicit. For example:

mapping(address myAddress => bool myBool) public myMapping;

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit gfslesE¥#4 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.21 UNUSED IMPORT

// INFORMATIONAL

Description

In the QEEUEEIAS I IR gL edal contract, there is an import that is not used within the contract and

that can be removed to improve code readability and maintainability:

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Remove the unused import from the contract.

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit gfslesE¥#4 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.22 UNOPTIMIZED FOR LOOPS

// INFORMATIONAL

Description

Throughout the code in scope, there are several instances of unoptimized for loop declarations that incur
higher gas costs than necessary. These inefficiencies typically manifest as array length calculations in
each iteration, unnecessary storage variable reads or updates, lack of unchecked increments for
counters that cannot overflow, amongst others.

Such patterns significantly increase gas consumption during execution, particularly for functions that
process large arrays or are called frequently. This results in higher transaction costs for users interacting
with the protocol and, in extreme cases, could lead to functions reaching the block gas limit, effectively
causing denial of service when the protocol handles larger datasets.

BVSS
AQ:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation

Optimize the loop declarations to reduce gas costs. Best practices include:

« The non-redundant initialization of the iterator with a default value (declaring simply gl is equivalent
to but more gas efficient).

« The use of the pre-increment operator (inside an block if using Solidity and

: unchecked {++i} MeIaSInIellY if compiling with Solidity E=IIPPA).

Additionally, when reading from storage variables, it is recommended to reduce gas costs by caching the
array to read locally and iterate over it to avoid reading from storage on every iteration.

For example:

« In Solidity versions between Ehlell <=0.8.21:

uint256[] memory arrayInMemory = arrayInStorage;

for (uint256; i < arrayInMemory.length ;) {

unchecked { ++i; }

}

« In Solidity versions E=/IIPPE

uint256[] memory arrayInMemory = arrayInStorage;

for (uint256; i < arrayInMemory.length ; ++i) {

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

Remediation Comment

SOLVED: The Ten Protocol team solved this finding in commit by following the mentioned
recommendation.

Remediation Hash

https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e?

https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

8. AUTOMATED TESTING

used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After

verified the smart contracts in the repository and was able to compile them correctly into their
abis and bhinary format, Slither was run against the contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APls across the entire code-base.

The security team assessed all findings identified by the Slither software, however, findings with related
to external dependencies are not included in the below results for the sake of report readability.

The findings obtained as a result of the Slither scan were reviewed, and some were not included in the
report because they were determined as false positives.

INFO:Detectors:

INFO:Detectors:

INFO:Detectors:

INFO:Detectors:

INFO:Detectors:

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

