
// Security Assessment 05.05.2025 - 05.08.2025

Ten Protocol
Obscu/TEN

Te n P r o t o c o l - O b s c u /T E N

Prepared by: HALBORN

Last Updated 06/18/2025

Date of Engagement: May 5th, 2025 - May 8th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

2 2

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

7

INFORMATIONAL

1 5

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Missing validation of callbackid existence in canreattemptcallback modifier
7.2 Lack of callback cancellation and lifecycle controls
7.3 Inadequate callback array management
7.4 Single step ownership transfer process
7.5 Fixed token minting regardless of transaction value
7.6 Lack of transaction processing tracking mechanism
7.7 Missing error handling for callbacks
7.8 Unnecessary external call in _internalrefund when refund amount is zero
7.9 Missing input validation
7.10 Use of low-level transfer method
7.11 Floating pragma
7.12 Use of revert strings instead of custom errors
7.13 Unhandled return value in _payforcallback function
7.14 Missing events

1 0 0%

7.15 Open to-dos
7.16 Redundant default value assignment
7.17 Public functions can be marked external
7.18 Commented functionality
7.19 Missing variable visibility
7.20 Lack of named mappings
7.21 Unused import
7.22 Unoptimized for loops

8. Automated Testing

1 . I n t r o d u c t i o n

Ten Protocol engaged Halborn to conduct a security assessment on their smart contracts beginning
on May 5th, 2025 and ending on May 8th, 2025. The security assessment was scoped to the smart
contracts provided to Halborn. Commit hashes and further details can be found in the Scope section of
this report.

The Ten Protocol codebase in scope mainly consists of an infrastructure with an upgradeable token
system, cross-chain messaging, and transaction processing mechanisms.

2. A s s e s s m e n t S u m m a r y

Halborn was provided 4 days for the engagement and assigned 1 full-time security engineer to review
the security of the smart contracts in scope. The engineer is a blockchain and smart contract security
expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were partially addressed by the Ten Protocol team . The main ones are the following:

Add validation in the canReattemptCallback modifier to ensure the callbackId
exists.

Consider adding functionality to allow callback originators to cancel their
pending callbacks when they're no longer needed or desired.

Consider implementing a comprehensive callback management system.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While
manual testing is recommended to uncover flaws in logic, process, and implementation; automated
testing techniques help enhance coverage of smart contracts and can quickly identify items that do not
follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into architecture, purpose and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope that

could led to arithmetic related vulnerabilities.
Local testing with custom scripts (Foundry).
Fork testing against main networks (Foundry).
Static analysis of security for scoped contract, and imported functions (Slither).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

REPOSITORY

(a) Repository: go-ten

(b) Assessed Commit ID: 6cae341

(c) Items in scope:

src/common/Structs.sol
src/system/contracts/Fees.sol
src/system/contracts/PublicCallbacks.sol
src/system/contracts/SystemDeployer.sol
src/system/contracts/TransactionPostProcessor.sol
src/system/utils/ZenBase.sol
src/ten_erc20/TENToken.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

fdc1a72

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

7

INFORMATIONAL

1 5

https://github.com/ten-protocol/go-ten
https://github.com/ten-protocol/go-ten/commit/6cae3418c7b2e48cda56011413a4afd13ddaeb7a
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

MISSING VALIDATION OF CALLBACKID EXISTENCE IN
CANREATTEMPTCALLBACK MODIFIER

LOW SOLVED - 05/20/2025

LACK OF CALLBACK CANCELLATION AND LIFECYCLE
CONTROLS

LOW SOLVED - 05/20/2025

INADEQUATE CALLBACK ARRAY MANAGEMENT LOW
PARTIALLY SOLVED -

05/20/2025

SINGLE STEP OWNERSHIP TRANSFER PROCESS LOW
PARTIALLY SOLVED -

05/20/2025

FIXED TOKEN MINTING REGARDLESS OF TRANSACTION
VALUE

LOW
RISK ACCEPTED -

06/11/2025

LACK OF TRANSACTION PROCESSING TRACKING
MECHANISM

LOW
RISK ACCEPTED -

06/11/2025

MISSING ERROR HANDLING FOR CALLBACKS LOW
RISK ACCEPTED -

06/11/2025

UNNECESSARY EXTERNAL CALL IN _INTERNALREFUND
WHEN REFUND AMOUNT IS ZERO

INFORMATIONAL
ACKNOWLEDGED -

06/11/2025

MISSING INPUT VALIDATION INFORMATIONAL
PARTIALLY SOLVED -

05/20/2025

USE OF LOW-LEVEL TRANSFER METHOD INFORMATIONAL SOLVED - 05/20/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

FLOATING PRAGMA INFORMATIONAL
ACKNOWLEDGED -

06/11/2025

USE OF REVERT STRINGS INSTEAD OF CUSTOM
ERRORS

INFORMATIONAL
ACKNOWLEDGED -

06/11/2025

UNHANDLED RETURN VALUE IN _PAYFORCALLBACK
FUNCTION

INFORMATIONAL
ACKNOWLEDGED -

06/11/2025

MISSING EVENTS INFORMATIONAL SOLVED - 05/20/2025

OPEN TO-DOS INFORMATIONAL
PARTIALLY SOLVED -

05/20/2025

REDUNDANT DEFAULT VALUE ASSIGNMENT INFORMATIONAL SOLVED - 05/20/2025

PUBLIC FUNCTIONS CAN BE MARKED EXTERNAL INFORMATIONAL SOLVED - 05/20/2025

COMMENTED FUNCTIONALITY INFORMATIONAL
PARTIALLY SOLVED -

05/20/2025

MISSING VARIABLE VISIBILITY INFORMATIONAL SOLVED - 05/20/2025

LACK OF NAMED MAPPINGS INFORMATIONAL SOLVED - 05/20/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

UNUSED IMPORT INFORMATIONAL SOLVED - 05/20/2025

UNOPTIMIZED FOR LOOPS INFORMATIONAL SOLVED - 05/20/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 M I S S I N G VA L I DAT I O N O F CA L L BAC K I D E X I ST E N C E I N

CA N R E AT T E M P TCA L L BAC K M O D I F I E R

// LOW

Description
The canReattemptCallback modifier in the PublicCallbacks contract does not validate whether the
provided callbackId actually exists before checking its eligibility for reattempt. The modifier only
verifies that the callback's block number is less than the current block number, but doesn't check if the
callback exists in the first place.

Since these calls succeed rather than revert, users could congest the network with seemingly legitimate
but ultimately useless operations. This could artificially inflate transaction volume and potentially disrupt
system performance as part of a broader denial-of-service strategy.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (3.1)

Recommendation
Add validation in the canReattemptCallback modifier to ensure the callbackId exists.

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

modifiermodifier canReattemptCallbackcanReattemptCallback((uint256uint256 callbackId callbackId)) {{
 requirerequire((callbackBlockNumbercallbackBlockNumber[[callbackIdcallbackId]] << block block..numbernumber,, "Callback cannot be reattempted yet""Callback cannot be reattempted yet"
 __;;
}}

946946
947947
948948
949949

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7. 2 L AC K O F CA L L BAC K CA N C E L L AT I O N A N D L I F ECYC L E

C O N T RO L S

// LOW

Description
The PublicCallbacks contract offers no mechanism for users to cancel registered callbacks that are
no longer needed or relevant. Once a callback is registered, it can only be removed from the system
through successful execution, and failed callbacks remain permanently in the system with no recourse
for users.

This creates a rigid, inflexible system where users have no agency over their registered callbacks after
submission, even if circumstances change or the callback is no longer desired.

Additionally, the permissionless nature of reattemptCallback() means anyone can trigger the
execution of another user's callback, removing the callback originator's control over when and if their
failed callback should be retried.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (2.5)

Recommendation
It is recommended to consider:

Adding functionality to allow callback originators to cancel their pending callbacks when they're no
longer needed or desired.

Implementing a time-based expiration mechanism to prevent stale callbacks from persisting
indefinitely.

Adding access controls to reattemptCallback() so only authorized parties (callback originators or
their delegates) can retry execution.

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7. 3 I N A D EQ UAT E CA L L BAC K A R R AY M A N AG E M E N T

// LOW

Description
The TransactionPostProcessor contract has two related issues with its onBlockEndListeners array
management:

1. No mechanism exists to remove callbacks once added, even if they become compromised or
malfunction.
2. The array can grow without bounds since callbacks can only be added, not removed.
3. The addOnBlockEndCallback() function lacks validation to prevent duplicate callbacks, allowing
the same callback to be registered multiple times.

These issues combine to create a vulnerability where:

Compromised or buggy callbacks cannot be removed and will continue to execute.
The array will only grow over time, steadily increasing gas costs for the onBlock() function.

Eventually, this could lead to transactions hitting block gas limits, causing a denial of service.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N (2.3)

Recommendation
Consider implementing a comprehensive callback management system that includes:

Functionality to remove specific callbacks from the array when they're no longer needed or have
security issues.

A reasonable maximum limit on the total number of callbacks that can be registered.
Validation to prevent duplicate callbacks from being added multiple times.

Remediation Comment
PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit COMMIT by enabling
the removal of callbacks and adding some input validation in TransactionPostProcessor . However,
mechanisms to set a maximum limit on callbacks or prevent duplicate entries were not implemented.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:M/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7. 4 S I N G L E ST E P OWN E RS H I P T R A N S F E R P RO C ES S

// LOW

Description
Some of the contracts in scope inherit the Ownable or OwnableUpgradeable contract implementations
from OpenZeppelin's library, which are used to restrict access to certain functions to the contract owner.
The Ownable pattern allows the contract owner to transfer ownership to another address using the
transferOwnership() function. However, the transferOwnership() function does not include a two-
step process to transfer ownership.

Regarding this, it is crucial that the address to which ownership is transferred is verified to be active and
willing to assume ownership responsibilities. Otherwise, the contract could be locked in a situation where
it is no longer possible to make administrative changes to it.

Additionally, the renounceOwnership() function allows renouncing to the owner permission.
Renouncing ownership before transferring it would result in the contract having no owner, eliminating the
ability to call privileged functions.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N (2.0)

Recommendation
Consider using OpenZeppelin's Ownable2Step or Ownable2StepUpgradeable contracts over the
Ownable and the OwnableUpgradeable implementations. Ownable2Step provides a two-step
ownership transfer process, which adds an extra layer of security to prevent accidental ownership
transfers.

Additionally, it is recommended that the owner cannot call the renounceOwnership() function to avoid
losing ownership of the contract.

Remediation Comment
PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit fdc1a72 by
implementing a two-step ownership transfer process in the Fees contract, but other ownable contracts
like TENToken and ZenBase still use a single-step process.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7. 5 F I X E D TO K E N M I N T I N G R EG A R D L ES S O F T R A N SAC T I O N

VA L U E

// LOW

Description
The ZenBase contract's onBlockEnd() function mints exactly 1 token for each processed transaction,
regardless of the transaction's value, complexity, or significance.

Since this approach fails to consider the relative importance of transactions, it could be exploited by
users who deliberately create numerous small transactions to maximize their token rewards, which could
lead to an economically unbalanced system where minor transactions receive the same reward as more
substantial ones.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N (2.0)

Recommendation
Consider implementing a more economically balanced token distribution system that considers
transaction attributes.

Remediation Comment
RISK ACCEPTED: The Ten Protocol team made a business decision to accept the risk of this finding and
not alter the contracts.

functionfunction onBlockEndonBlockEnd((StructsStructs..TransactionTransaction[[]] calldatacalldata transactions transactions)) externalexternal onlyCaller onlyCaller {{
 ifif ((transactionstransactions..length length ==== 00)) {{
 revertrevert(("No transactions to convert""No transactions to convert"));;
 }}
 // Implement custom logic here// Implement custom logic here
 forfor ((uint256uint256 i i==00;; i i<<transactionstransactions..lengthlength;; i i++++)) {{
 // Process transactions// Process transactions
 _mint_mint((transactionstransactions[[ii]]..fromfrom,, 11));;
// emit TransactionProcessed(transactions[i].from, 1);// emit TransactionProcessed(transactions[i].from, 1);
 }}
}}

3838
3939
4040
4141
4242
4343
4444
4545
4646
4747
4848

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N

7. 6 L AC K O F T R A N SAC T I O N P RO C ES S I N G T R AC K I N G

M EC H A N I S M

// LOW

Description
The onBlockEnd() function of the ZenBase contract lacks a mechanism to track which transactions
have been processed, potentially allowing the same transaction to be processed multiple times. This
could lead to unauthorized token minting through transaction replay attacks, undermining the token's
economic model and distribution integrity.

Without a tracking mechanism, there's no way to prevent the same transaction from being submitted
multiple times, potentially resulting in duplicate token minting.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N (2.0)

Recommendation
Consider implementing a transaction tracking mechanism that records completed transactions in order
to prevent duplicate processing and potential unauthorized token minting.

Remediation Comment
RISK ACCEPTED: The Ten Protocol team made a business decision to accept the risk of this finding and
not alter the contracts.

functionfunction onBlockEndonBlockEnd((StructsStructs..TransactionTransaction[[]] calldatacalldata transactions transactions)) externalexternal onlyCaller onlyCaller {{
 ifif ((transactionstransactions..length length ==== 00)) {{
 revertrevert(("No transactions to convert""No transactions to convert"));;
 }}
 // Implement custom logic here// Implement custom logic here
 forfor ((uint256uint256 i i==00;; i i<<transactionstransactions..lengthlength;; i i++++)) {{
 // Process transactions// Process transactions
 _mint_mint((transactionstransactions[[ii]]..fromfrom,, 11));;
// emit TransactionProcessed(transactions[i].from, 1);// emit TransactionProcessed(transactions[i].from, 1);
 }}
}}

3838
3939
4040
4141
4242
4343
4444
4545
4646
4747
4848

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:N/Y:N

7.7 M I S S I N G E R RO R H A N D L I N G FO R CA L L BAC KS

// LOW

Description
The onBlock() function lacks error handling when executing callbacks. If any callback in the loop
reverts, the entire transaction processing fails, creating a critical single point of failure.

This design allows malicious or buggy callbacks to cause denial of service for the entire transaction post-
processing system.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N (2.0)

Recommendation
Consider implementing try-catch blocks around each callback invocation to isolate failures and handle
them accordingly.

Remediation Comment
RISK ACCEPTED: The Ten Protocol team made a business decision to accept the risk of this finding and
not alter the contracts.

functionfunction onBlockonBlock((StructsStructs..TransactionTransaction[[]] calldatacalldata transactions transactions)) publicpublic onlySelf onlySelf {{
 ifif ((transactionstransactions..length length ==== 00)) {{
 revertrevert(("No transactions to convert""No transactions to convert"));;
 }}

// emit TransactionsConverted(transactions.length);// emit TransactionsConverted(transactions.length);

 forfor ((uint256uint256 i i == 00;; i i << onBlockEndListeners onBlockEndListeners..lengthlength;; ++++ii)) {{
 IOnBlockEndCallback callback IOnBlockEndCallback callback == onBlockEndListeners onBlockEndListeners[[ii]];;
 callback callback..onBlockEndonBlockEnd((transactionstransactions));;
 }}
}}

4646
4747
4848
4949
5050
5151
5252
5353
5454
5555
5656
5757

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:N/D:N/Y:N

7. 8 U N N EC ES SA RY E X T E R N A L CA L L I N _ I N T E R N A L R E F U N D

WH E N R E F U N D A M O U N T I S Z E RO

// INFORMATIONAL

Description
In the PublicCallbacks contract, the _executeNextCallback() function unconditionally calls the
_internalRefund function regardless of whether there is actually any gas to refund. When
gasRefundValue is 0, this results in an unnecessary external call that consumes gas without providing
any benefit.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation
Add a check to avoid the external call when the refund amount is zero.

Remediation Comment
ACKNOWLEDGED: The Ten Protocol team made a business decision to acknowledge this finding and not
alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7. 9 M I S S I N G I N P U T VA L I DAT I O N

// INFORMATIONAL

Description
Throughout the codebase, there are several instances where input values are assigned without proper
validation. For example, ensuring that an input address is not the zero address or that an integer falls
within a valid range.

Failing to validate inputs before assigning them to state variables can lead to unexpected system
behavior or even complete failure.

Instances of this issue include:

In Fees.initialize() , flatFee is not validated to ensure it's within reasonable bounds before
being assigned to _messageFee .

In Fees.setMessageFee() , newFeeForMessage is not validated to ensure it's within reasonable
bounds.

In SystemDeployer.constructor() , the remoteBridgeAddress is not checked against the zero
address before assignment.

In TransactionPostProcessor.addOnBlockEndCallback() , callback addresses are added
without verifying that:

They are not zero addresses.
They are actually contract addresses.
They properly implement the IOnBlockEndCallback interface.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N (1.5)

Recommendation
Add proper validation to ensure that the input values are within expected ranges and that addresses are
not the zero address. This will help prevent unexpected behavior and improve the overall robustness of
the code.

Remediation Comment
PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit fdc1a72 by adding
several input validations, such as zero-address checks in SystemDeployer.sol , ZenBase.sol , and
TransactionPostProcessor.sol . However, validations for fee-related parameters in the Fees
contract were not implemented.

Remediation Hash

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N

https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.1 0 U S E O F LOW- L EV E L T R A N S F E R M E T H O D

// INFORMATIONAL

Description
In the Fees contract, there is an instance of the transfer() method to withdraw native assets (e.g.
Ether) from the smart contracts. Although the use of transfer has been a standard practice for sending
native assets due to its built-in reentrancy protection (since it only forwards 2300 gas, preventing called
contracts from performing state changes), it is not considered best practice.

The gas cost of EVM instructions may change significantly during hard forks, which may break already
deployed contract systems that make fixed assumptions about gas costs.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (1.0)

Recommendation
Transfer native assets via the low-level call() method instead.

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.1 1 F LOAT I N G P R AG M A

// INFORMATIONAL

Description
The contracts in scope currently use different floating pragma versions ^0.8.0 , ^0.8.22 and ^0.8.28
which means that the code can be compiled by any compiler version that is greater than these versions,
and less than 0.9.0 .

However, it is recommended that contracts should be deployed with the same compiler version and flags
used during development and testing. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using another pragma. For example, an outdated pragma version might
introduce bugs that affect the contract system negatively.

Additionally, from Solidity versions 0.8.20 through 0.8.24 , the default target EVM version is set to
Shanghai , which results in the generation of bytecode that includes PUSH0 opcodes. Starting with
version 0.8.25 , the default EVM version shifts to Cancun , introducing new opcodes for transient
storage, TSTORE and TLOAD .

In this aspect, it is crucial to select the appropriate EVM version when it's intended to deploy the
contracts on networks other than the Ethereum mainnet, which may not support these opcodes. Failure
to do so could lead to unsuccessful contract deployments or transaction execution issues.

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (1.0)

Recommendation
Lock the pragma version to the same version used during development and testing (for example: pragma
solidity 0.8.28;), and make sure to specify the target EVM version when using Solidity versions from
0.8.20 and above if deploying to chains that may not support newly introduced opcodes.

Additionally, it is crucial to stay informed about the opcode support of different chains to ensure smooth
deployment and compatibility.

Remediation Comment
ACKNOWLEDGED: The Ten Protocol team made a business decision to acknowledge this finding and not
alter the contracts. They updated the Solidity compiler version specified in the contract pragmas, but did
not uniformly lock all pragmas to a single, exact compiler version (without a caret) across all files.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N

7.1 2 U S E O F R EV E RT ST R I N G S I N ST E A D O F C U STO M E R RO RS

// INFORMATIONAL

Description
Throughout the files in scope, there are several instances where revert strings are used over custom
errors.

In Solidity, replacing hard-coded revert message strings with the Error() syntax is an optimization
strategy that can significantly reduce gas costs. Hard-coded strings, stored on the blockchain, increase
the size and cost of deploying and executing contracts.

The Error() syntax allows for the definition of reusable, parameterized custom errors, leading to a
more efficient use of storage and reduced gas consumption. This approach not only optimizes gas usage
during deployment and interaction with the contract but also enhances code maintainability and
readability by providing clearer, context-specific error information.

BVSS

AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N (0.8)

Recommendation
Consider replacing all revert strings with custom errors. For example:

error error ConditionNotMetConditionNotMet(());;

ifif ((!!conditioncondition)) revertrevert ConditionNotMetConditionNotMet(());;

or starting from Solidity 0.8.27 :

requirerequire((conditioncondition,, ConditionNotMetConditionNotMet(())));;

For more references, see here and here.

Remediation Comment
ACKNOWLEDGED: The Ten Protocol team made a business decision to acknowledge this finding and not
alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://soliditylang.org/blog/2021/04/21/custom-errors/#errors-in-depth
https://soliditylang.org/blog/2024/09/04/solidity-0.8.27-release-announcement/

7.1 3 U N H A N D L E D R E T U R N VA L U E I N _PAY FO RCA L L BAC K

F U N C T I O N

// INFORMATIONAL

Description
In the PublicCallbacks contract, the _payForCallback function makes a low-level call to transfer
ETH to the block's coinbase address without checking the return value of this operation. Although the
function contains comments indicating that the success of this operation is not a concern, ignoring the
return value could lead to silent failures in payment processing.

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.8)

Recommendation
Consider modifying the function to at least monitor for failures, even if the contract chooses not to
revert.

Remediation Comment
ACKNOWLEDGED: The Ten Protocol team made a business decision to acknowledge this finding and not
alter the contracts.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N

7.1 4 M I S S I N G EV E N TS

// INFORMATIONAL

Description
Throughout the contracts in scope, there are several instances where administrative functions change
contract state by modifying core state variables without them being reflected in event emissions.

The absence of events may hamper effective state tracking in off-chain monitoring systems.

Instances of this issue can be found in:

Fees.setMessageFee()
Fees.withdrawalCollectedFees()
PublicCallbacks.register()
PublicCallbacks.executeNextCallback()
TransactionPostProcessor.addOnBlockEndCallback()

BVSS

AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.6)

Recommendation
Emit events for all state changes that occur as a result of administrative functions to facilitate off-chain
monitoring of the system.

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.1 5 O P E N TO - D O S

// INFORMATIONAL

Description
Throughout the contracts in scope, there are instances of open TODO comments that indicate incomplete
documentation or potentially unfinished implementation.

These unresolved items create uncertainty about the completeness of the codebase and may hide
critical implementation gaps that could lead to unexpected behavior or security vulnerabilities when the
protocol is deployed.

BVSS

AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N (0.4)

Recommendation
Ensure that the TO-DO comments are implemented and resolved before the final release of the project.

Remediation Comment
PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit fdc1a72 by addressing
most TODO comments and providing updated documentation or removing them. However, one TODO
comment regarding an explanation remains in Fees.sol .

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:N/I:M/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.1 6 R E D U N DA N T D E FAU LT VA L U E AS S I G N M E N T

// INFORMATIONAL

Description
In the PublicCallbacks contract's initialize() function, the state variables nextCallbackId and
lastUnusedCallbackId are explicitly initialized to zero.

However, in Solidity, all state variables are automatically initialized to their default values when a
contract is deployed - zero for integers, false for booleans, empty string for strings, etc. Therefore,
explicitly initializing these uint256 variables to zero is redundant and wastes gas during contract
initialization.

BVSS

AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N (0.3)

Recommendation
Remove the redundant assignments from the initialize() function. If the function becomes empty
after removing redundant assignments, consider whether the initialize() function is needed at all, or
if it will be needed in the future for additional initialization logic when upgrading the contract.

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:N/D:L/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.1 7 P U B L I C F U N C T I O N S CA N B E M A R K E D E X T E R N A L

// INFORMATIONAL

Description
Some functions throughout the contracts in scope are currently defined with the public visibility
modifier, even though the functions are not called from within the contract, resulting in higher gas costs
than necessary.

Instances of this issue include:

TransactionPostProcessor.addOnBlockEndCallback()
TransactionPostProcessor.onBlock()
TENToken.pause()
TENToken.unpause()

BVSS

AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.3)

Recommendation
Modify the public functions not used within the contracts with the external visibility modifier.

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.1 8 C O M M E N T E D F U N C T I O N A L I T Y

// INFORMATIONAL

Description
Throughout the contracts in scope, there are instances of commented out code that is not used. This
code may introduce unnecessary confusion to the contract.

While commenting out code can be useful for debugging or testing purposes, it can also lead to confusion
and make the codebase harder to maintain.

BVSS

AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.2)

Recommendation
Remove the commented-out lines of code to clean up the contract and improve readability.

Alternatively, if the functionality is needed, uncomment and update the code as necessary.

Remediation Comment
PARTIALLY SOLVED: The Ten Protocol team partially solved this finding in commit fdc1a72 by removing
the commented-out event emission in TransactionPostProcessor.sol , but a commented-out event
emission remains in ZenBase.sol .

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7.1 9 M I S S I N G VA R I A B L E V I S I B I L I T Y

// INFORMATIONAL

Description
The onBlockEndListeners variable of the TransactionPostProcessor contract is not explicitly
defined. By default, variables are set with the internal visibility.

However, it is considered best practice to explicitly specify visibility to enhance clarity and prevent
ambiguity. Clearly labeling the visibility of all variables and functions will help in maintaining clear and
understandable code.

BVSS

AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N (0.2)

Recommendation
Explicitly define the visibility of all variables in the contracts to enhance readability and reduce the
potential for errors.

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:L/R:F/S:U/C:N/A:L/I:N/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7. 2 0 L AC K O F N A M E D M A P P I N G S

// INFORMATIONAL

Description
The project contains several unnamed mappings despite using a Solidity version that supports named
mappings.

Named mappings improve code readability and self-documentation by explicitly stating their purpose.

Instances of this issue can be found in:

PublicCallbacks.callbacks()
PublicCallbacks.callbackBlockNumber()

BVSS

AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N (0.1)

Recommendation
Consider refactoring the mappings to use named arguments, which will enhance code readability and
make the purpose of each mapping more explicit. For example:

mappingmapping((addressaddress myAddress myAddress =>=> boolbool myBool myBool)) publicpublic myMapping myMapping;;

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:H/AX:H/R:F/S:U/C:N/A:N/I:L/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7. 2 1 U N U S E D I M P O RT

// INFORMATIONAL

Description
In the TransactionPostProcessor contract, there is an import that is not used within the contract and
that can be removed to improve code readability and maintainability:

importimport "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol""@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";;

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Remove the unused import from the contract.

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

7. 2 2 U N O P T I M I Z E D FO R LO O P S

// INFORMATIONAL

Description
Throughout the code in scope, there are several instances of unoptimized for loop declarations that incur
higher gas costs than necessary. These inefficiencies typically manifest as array length calculations in
each iteration, unnecessary storage variable reads or updates, lack of unchecked increments for
counters that cannot overflow, amongst others.

Such patterns significantly increase gas consumption during execution, particularly for functions that
process large arrays or are called frequently. This results in higher transaction costs for users interacting
with the protocol and, in extreme cases, could lead to functions reaching the block gas limit, effectively
causing denial of service when the protocol handles larger datasets.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Optimize the for loop declarations to reduce gas costs. Best practices include:

The non-redundant initialization of the iterator with a default value (declaring simply i is equivalent
to i = 0 but more gas efficient).

The use of the pre-increment operator (inside an unchecked block if using Solidity >=0.8.0 and <=
0.8.21 : unchecked {++i} , or simply ++i if compiling with Solidity >=0.8.22).

Additionally, when reading from storage variables, it is recommended to reduce gas costs by caching the
array to read locally and iterate over it to avoid reading from storage on every iteration.

For example:

In Solidity versions between >=0.8.0 and <=0.8.21:

uint256uint256[[]] memorymemory arrayInMemory arrayInMemory == arrayInStorage arrayInStorage;;

forfor ((uint256uint256;; i i << arrayInMemory arrayInMemory..length length ;;)) {{
 // code logic// code logic
 unchecked unchecked {{ ++++ii;; }}
}}

In Solidity versions >=0.8.22:

uint256uint256[[]] memorymemory arrayInMemory arrayInMemory == arrayInStorage arrayInStorage;;

forfor ((uint256uint256;; i i << arrayInMemory arrayInMemory..length length ;; ++++ii)) {{

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

 // code logic// code logic
}}

Remediation Comment
SOLVED: The Ten Protocol team solved this finding in commit fdc1a72 by following the mentioned
recommendation.

Remediation Hash
https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

https://github.com/ten-protocol/go-ten/commit/fdc1a7261852e33e7818c28bdad391e34dbfa7e7

8 . AU TO M AT E D T EST I N G

D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After
Halborn verified the smart contracts in the repository and was able to compile them correctly into their
abis and binary format, Slither was run against the contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire code-base.

The security team assessed all findings identified by the Slither software, however, findings with related
to external dependencies are not included in the below results for the sake of report readability.

O u t p u t

The findings obtained as a result of the Slither scan were reviewed, and some were not included in the
report because they were determined as false positives.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

